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Abstract—Many problems from classical planning are applied
in the environment with other, possibly adversarial agents.
However, plans found by classical planning algorithms lack the
robustness against the actions of other agents – the quality
of computed plans can be significantly worse compared to the
model. To explicitly reason about other (adversarial) agents, the
game-theoretic framework can be used. The scalability of game-
theoretic algorithms, however, is limited and often insufficient for
real-world problems. In this paper, we combine classical domain-
independent planning algorithms and game-theoretic strategy-
generation algorithm where plans form strategies in the game.
Our contribution is threefold. First, we provide the methodology
for using classical planning in this game-theoretic framework.
Second, we analyze the trade-off between the quality of the
planning algorithm and the robustness of final randomized plans
and the computation time. Finally, we analyze different variants
of integration of classical planning algorithms into the game-
theoretic framework and show that at the cost a minor loss in
the robustness of final plans, we can significantly reduce the
computation time.

I. INTRODUCTION

Classical domain-independent planning is among the key
areas of artificial intelligence. The focus of research is often
on plan-generation methods that allow scaling up and solving
real-world problems [1]. However, many of the domains where
planning algorithms can be applied are not single-agent. Exam-
ples include planning defense measures, information collection
in an adversarial environment or planning a robust mission
where nature acts as the other agent. Using a plan that ignores
the presence of other agents can have severe consequences and
the actual quality of the plan can be arbitrarily worse compared
to the expectations computed by the planning algorithm.

In order to explicit reason about other agents and find
a provably robust plan, game-theoretic methods have to be
used. However, from game theory, we now that in order to
act optimally in a game, agents must often randomize over
several plans or actions and it is not always sufficient to make
a single plan more robust. By randomizing over different plans
or actions, the other agents have uncertainty about which plan
is going to be executed making it difficult for them to exploit
such strategy. Existing planning algorithms (even the ones that
are trying to adopt some game-theoretic aspects [2], [3], [4])
are not able to find such randomized plans. Therefore, an
algorithm for finding optimal randomized plans must be based
on a game-theoretic algorithm for computing an equilibrium.
Using game-theoretic algorithms directly, however, is often

not possible due to insufficient scalability. While there are
several successful applications of game-theoretic algorithms
in practice, for example in domains of physical security [5] or
protecting wildlife [6], most of the methods used for scaling-
up are domain-dependent and their transferability to other
domains is limited.

One of the general game-theoretic algorithms that can
be adopted for many domains is the incremental strategy
generation method called the double oracle algorithm [7].
Double oracle (DO) algorithm tackles one common problem
of game-theoretic algorithms – if agents have exponentially
many possible plans to choose from, the size of the solved
game is intractable. To this end, DO algorithms restrict the
space of possible plans to choose from – the algorithm forms
a restricted problem that is iteratively expanded by calculating
and adding into the problem new plans as best responses to the
current strategy of the other agent from the restricted problem.
In the worst case, all plans have to be added into the restricted
problem. This, however, rarely happens in practice and DO
algorithms are often able to find an optimal strategy using
only a fraction of all possible plans (see, for example, [8], [9],
[10]). While this methodology is general, practical applications
use domain-specific algorithms for computing best response
plans [11], [10]. Therefore, using a double-oracle method in
a different domain typically requires a non-trivial work on
designing and implementing best response algorithms.

This limitation, however, can be overcome by using domain-
independent planning algorithms for computing the best re-
sponse plans instead of the domain-specific algorithms. More-
over, integrating classical domain-independent planning algo-
rithms in the double oracle framework allows one to easily
extend their planning algorithms in order to increase their
robustness against other agents in a multi-agent environment.
Finally, most of the game-theoretic works assume that a best
response (or at least its approximation with a bounded error)
can be computed. However, this is true only for small planning
problems and planning algorithms. In practice, one cannot
guarantee that the found plan is optimal.

Our main contributions thus include (1) the methodology for
using algorithms from classical domain-independent planning
algorithms in the game-theoretic framework thus computing
robust randomized plans; (2) the experimental analysis of the
trade-off between the quality of the plans computed as the
best responses, the robustness of the final randomized strategy,



and the required computation time; (3) comparison of several
variants of integration of the classical domain-independent
planning into the double-oracle framework and proposition of
a novel variant that for a minor loss in the final robustness
achieves significant computation speed-up. We demonstrate
our approach on a simple, yet computationally challenging
resource collection problem1 where one agent controls a group
of UAVs and the goal is to collect information from a defined
set of resources. The other agent in the domain, the adversary,
aims for the opposite.

II. RELATED WORK

The idea of combining planning and game theory has
appeared in previous works, although with different goals.
Often, the goal was to update the planning formalism in order
to handle multiple agents and multiple goals the agents can
pursue [12], [13]. A body of work concerning non-cooperative
multi-agent planning exploits game theory for generating plans
for each agent while minimizing conflicts with plans of other
agents. Resolving such conflicts can be done by translating the
task into an invertible planning problem [14], or by selecting
the best plan for each agent from a set of pre-computed plans
using a two-game approach [15]. Closer to our work, the
conflicts can also be resolved by a best-response approach
that iteratively improves plans of each agent [2]. Such an
approach has been used for planning Electric Autonomous
Vehicles [3]. These works, however, focus on congestion
games, for which a single plan can be optimally robust (a pure
equilibrium is guaranteed to exist for this class of games).
This, however, is not true for most of the non-cooperative
games and adversarial scenarios. Speicher et al. [4] used game
theoretic framework of Stackelberg games and seek a pure plan
of the leader that is robust against actions of the adversary.
Again, we seek a possibly randomized strategy which poses
computation challenges that are not present when restricting
to pure strategies.

There are several existing methods that use the double-
oracle incremental strategy generation method. The original
paper by McMahan et al. [7] was used in the setting where
one player sought an optimal way to get through an area unob-
served while the other player placed the surveillance cameras.
In that work and many other follow-up works (e.g., see [8],
[11], [9]), the standard assumption is that the best response
algorithm is capable of computing the optimal plan (or at least
a best response with a bounded error) given the strategy of
the opponent. On the other hand, the recent work combined
reinforcement learning with double oracle algorithm [10], [16],
[17] on domains where computing (approximate) best response
is not possible. The size of the domains for the learning
problems, however, does not allow for complete analysis since
the exact exploitability of final strategies (approximation error
of final strategies) cannot be computed. There are two main

1Note that we use this problem as an example domain that is challenging
enough for the classical domain-independent planning algorithms and we can
still compute an optimal plan using a domain-specific algorithm. The goal is
not, per se, to design an algorithm for this particular domain.

differences between our paper and the existing works. First,
instead of using a domain-specific best-response algorithm, we
show how classical domain-independent planning algorithms
can be used as a best response algorithm even against a
randomized strategy of the other agent. Second, by limiting the
time for the planning algorithms we parametrize the quality
of the planning algorithms. Moreover, since we are also able
to compute an exact best response using a domain-specific A∗

algorithm, we are able to exactly identify possible weaknesses
of using heuristic best response algorithms, which has not been
done in the existing literature.

III. TECHNICAL BACKGROUND

This section introduces the terminology used in the paper.

A. Classical Planning

Classical planning, the simplest form of Automated Plan-
ning, assumes a static, deterministic and fully observable
environment; a solution plan amounts to a sequence of actions.

A Planning Domain Model is a couple D = (L,A), where
L is the set of propositional atoms used to describe the state
of the environment, and A is the set of actions over L. A
set of states S over L is defined as S ⊆ 2L. In classical
planning, we assume that an atom present in a state is true
in that state while an atom not being present in a state is
considered to be false in that state. An action is a quadruple
a = (pre(a), del(a), add(a), cost(a)), where pre(a), del(a)
and add(a) are sets of atoms from L representing a’s pre-
condition, delete, and add effects, respectively, and cost(a)
represents cost of a’s execution. An action a is applicable (or
executable) in a state s if and only if pre(a) ⊆ s.

If possible, application (or execution) of a in s, denoted
as γ(s, a), yields the successor state of the environment (s \
del(a)) ∪ add(a), otherwise γ(s, a) is undefined. The notion
of applicability can be extended to sequences of actions, i.e.,
γ(s, 〈a1, . . . , an〉) = γ(. . . γ(s, a1) . . . , an).

A Planning problem (or a problem instance) is a triple
P = (D, I, G), where D is a planning domain model, I is
the initial state of the environment, and G is the goal in the
form of a set of propositions. A plan π = 〈a1, . . . , an〉 (for a
planning problem P) is a sequence of actions (defined in D)
such that their consecutive application starting in the initial
state results in a state satisfying the goal (i.e., a goal state),
i.e., G ⊆ γ(I, π). We say that a plan π = 〈a1, . . . , an〉 (for
P) is optimal if for every plan π′ = 〈a′1, . . . , a′m〉 (for P) it
is the case that

∑n
i=1 cost(ai) ≤

∑m
j=1 cost(a′j).

The typed PDDL representation considers first order logic
predicates for describing the environment and actions and thus
making the representation compact. Predicates and actions can
have typed parameters (free variables) that can be substituted
for specific objects of a given type in order to obtain the
above (set-theoretic) representation. For example, (at ?u - uav
?l - location) represents a relation “at” between UAVs and
Locations. Then, (at u1 l2), obtained by substituting u1 for ?u
and l2 for ?l, represents that the UAV u1 is at the location l2.



To reason with (discrete) time we can introduce a “timeline”
type into the typed PDDL model such that objects of the “time-
line” type represent specific time-stamps. Although we have
to know the upper bound (i.e., the latest timestamp) upfront as
in PDDL all the objects have to be specified upfront, it can be
estimated from the size of a given problem. Reasoning with
timestamps can be embedded into the model by introducing
“arithmetic” and “relation” predicates that represent essential
operations. For example, we can define a predicate (time-add
?t1 ?t2 ?t3 - timestamp) that represents t3 = t1 + t2, or
a predicate (time-geq ?t1 ?t2 - timestamp) that represents
whether t1 ≥ t2. Objects whose states evolve throughout the
time must be associated with a “time” predicate (e.g. (time
?u - uav ?t - timestamp)). Static objects and objects that
can only disappear (e.g. collected resource) do not have to
be associated with time (the time of object disappearance can
be derived from execution time of the action that makes it
disappear). Actions that deal with a single “timed” object
update its “time” predicate according to its current state and
duration of the action. Actions that deal with multiple “timed”
objects update their “time” predicate according to the current
state of the “latest” object and duration of the action. For
example, a joint action for uav1 and uav2 takes 2 time units
(denoted as t2), their current time is (time uav1 t3) and (time
uav2 t5) respectively, then their time after action execution
will be (time uav1 t7) and (time uav2 t7) respectively.
B. Normal-Form Games

The baseline representation for modeling strategic interac-
tion is normal-form games (NFGs). A normal-form game Γ
is a tuple (N,S, u), where N is the finite set of players, Si
is a finite set of pure strategies of player i, and ui is a utility
function that assigns a real value for each outcome of the game
defined by a strategy profile – an N -tuple of pure strategies
(one for each player); ui : S → R. A mixed strategy is a
probability distribution over pure strategies, σ(s1) represents
the probability with which strategy s1 is played by player 1
(for brevity, we use σi to denote some mixed strategy of
player i). We restrict on the two player zero-sum setting where
|N | = 2 and the sum of utility values of players equals to 0
(u1 = −u2). We say that strategy of one player si is the
best response to the strategy of the opponent σ−i (denoted as
si = br(σ−i))

ui(si, σ−i) ≥ ui(s′i, σ−i) ∀s′i ∈ Si.
We say that strategy profile σ is in Nash equilibrium (NE)
if each player is playing best response to the strategy of the
opponent. Computing a NE in a zero-sum game is possible in
polynomial time in the size of the game using the following
simple linear program (e.g., [18]):

max
p,U

U (1)∑
s1∈S1

p(s1) · u1(s2, s1) ≥ U ∀s2 ∈ S2 (2)∑
s1∈S1

p(s1) = 1 (3)

value of p variables represent the optimal (Nash equilibrium)
strategy, value U is the expected utility of player 1 in the
game, denoted as value of the game.

When the number of possible strategies is exponential, solv-
ing the linear program becomes computationally intractable.
One way for tackling this issue is to incrementally build
the game using the double-oracle algorithm. The algorithm
starts with a restricted game Γ′ = (N,S′, u), where the
set of possible pure strategies available to players S′ is
restricted such that players can select only from a limited
set of pure strategies (generally, S′ ⊆ S). In each iteration
of the algorithm, the restricted game Γ′ is solved using the
LP (equations (1)-(3)). Next, each player computes a best
response from all strategies S to the strategy of the opponent
from the restricted game Γ′. These best response strategies
are added into S′ and the restricted game is expanded. The
algorithm terminates when neither of the players can add a best
response strategy that improves the expected outcome from the
restricted game. When the algorithm terminates, NE of the
restricted game is the same as in the original game (since best
response is computed over unrestricted set of all strategies).

IV. PLANNING IN ADVERSARIAL DOMAINS

In adversarial environments, the quality of plans depends
on possible actions of adversaries. As we focus on zero-sum
game, for maximizing the reward (or minimizing the cost), the
crucial aspect is to apply specific action before the adversary.
To illustrate the problem, let us consider two agents who
compete against each other in collecting resources. After one
agent collects a given resource, the other agent can no longer
collect it. Intuitively, a good plan for the agent is such that the
agent collects resources before its competitor. To reflect this
observation the cost of the “collect” action should be higher if
it is planned to be executed (more likely) after the competitor’s
“collect” action.

Assuming that we have full knowledge of actions and
intentions (goals) of the competitor (or adversary) we can
estimate its plans. Specifically, we are interested in actions of
the competitor that hinder agent’s goals. In a nutshell, agent’s
critical actions for achieving its goals (e.g. the “collect”
action) have to be applied before the adversary actions of the
competitor. Knowing the timestamps of the adversary actions
(in the competitor’s plan estimate), we can determine deadlines
for agent’s critical actions.

Definition 1. Let A be a set of agent’s actions and A′ be a set
of competitor’s actions. Then, let Ac ⊆ A be a set of critical
actions and for each ac ∈ Ac we define a set of adversary
actions ad(ac) ∈ A′. Let π′ = 〈a′1[t′1], . . . , a′m[t′m]〉 be a plan
of the competitor, respectively (the notation a′i[t

′
i] represents

that an action a′i is executed at timestamp t′i). Then, for each
ac ∈ Ac we can determine a deadline with respect to π′ as
min{t | a[t] ∈ π′, a ∈ ad(ac)}.

Estimated competitor’s plans provide deadlines for agent’s
critical actions. We can formulate a planning problem such that



the agent’s plans are optimized for planning critical actions
(e.g. the “collect” action) before the deadlines.

Definition 2. For a single competitor’s plan π′ and a critical
action ac ∈ Ac and a timestamp t we define a cost function
c(a[t], π′) such that c(ac[t], π′) = 0, for t smaller than the
deadline (with respect to π′), c(ac[t], π′) = M , for t greater
than the deadline, and c(ac[t]) = M/2, for t equal to the
deadline, where M corresponds to the penalty agent receives
for not executing critical action ac before the competitor’s
adversary action. For an agent’s planning problem P and
competitor’s plan π′, we define an agent’s response planning
problem Pπ′ such that critical actions of P are associated
with the above cost function.

Optimal plan of the response planning problem (minimizing
the total action cost) accounts for the best possible agent’s
response on the competitor’s plan.

V. FORMULATING THE GAME

We now describe how the classical planning algorithms
can be integrated into the double oracle algorithm. We define
a strictly competitive game ΓP between an agent and its
competitor. All possible plans Π1 of an agent in the planning
problem P form the set of pure strategies in the game. Finally,
the utility function for a combination of plans is the sum of
the marginal costs of actions in respective plans:

u(π1, π2) =
∑

ac[t]∈π1

c(ac[t], π2) π1 ∈ Π1, π2 ∈ Π2 (4)

Solving game ΓP requires the double oracle algorithm,
since it is not possible to enumerate all possible plans in the
planning problem for an agent. There are two key steps that
must be addressed: (1) how to formulate a planning problem
in order for the classical planning algorithm can be used as the
best response algorithm; (2) how to use the classical planning
algorithm if we do not have guarantees that an optimal plan
will be found.

A. Classical Planners as Best Response Algorithms

We need to formulate a response planning problem that
corresponds to finding a best response for agent i against a
strategy of the opponent from the restricted game σ′−i. Since
σ′−i can be a randomized strategy, the opponent of agent i can
randomly choose from several plans to execute. This affects
the definition of costs in the planning problem of agent i.

As we deal with a randomized strategy, i.e., the opponent
can choose a plan from a given set of plans with some
probability, we have to generalize the cost function of critical
actions from Definition 2 as follows. Let π′−i,1, . . . , π

′
−i,n

be the plans of the opponent of agent i and each of them
is played with probabilities σ′−i(π

′
−i,j) (for j = 1, . . . , n

and
∑n
j=1 σ

′
−i(π

′
−i,j) = 1) according to the solution of the

restricted game. Then, the cost of each critical action ac in a
given timestamp t is calculated as:

cost(ac[t]) =

n∑
j=1

σ−i,j(π
′
−i,j) · c(ac[t], π′−i,j) (5)

Fig. 1: Visualization of two plans in a small game

Example 1. An example of cost generation of best response
costs against a mixed strategy that mixes two plans is depicted
in Figure 1. Let π1 be a plan denoted by the solid arrows and
let π2 be a plan denoted by the dashed arrows. Plan π1 collects
both resources in time 20 and plan π2 collects both resources
in time 30. Let σ be a mixed strategy of Player 1 that plays
π1 with probability 0.75 and π2 with probability 0.25. The
penalty M is set to 100. Then the cost for each critical action
collecting a given resource will be:
• If the resource is collected till 20, the cost is 0
• If the resource is collected exactly at 20, the cost is

37.5 = 100 ∗ 0.75 ∗ 0.5
• If the resource is collected between 20 and 30, the cost

is 75 = 100 ∗ 0.75.
• If the resource is collected exactly at 30, the cost is

87.5 = 100 ∗ (0.75 + (1.0− 0.75) ∗ 0.5)
• If the resource is collected after 30, the cost is 100

B. Using Planners Without Optimality Guarantees

While classical planning algorithms can guarantee that the
found plan is optimal, this is rarely the case due to the
size of the planning problem. Therefore, we investigate the
consequences of using planning algorithms without guarantees
as a (heuristic) estimator of best responses in the double-oracle
algorithm. When the planning algorithm does not guarantee
finding (epsilon) optimal plan, double oracle algorithm loses
guarantees for finding NE. Classical planning algorithms are
typically run with a given time limit and best plan found within
this time limit is returned (e.g., in the satisficing track of the
planning competition the limit is 1800s [1]). Therefore, we
adopt this setting and use planning algorithms with a fixed
deadline on computation time.

On the other hand, the double oracle algorithm does not
necessarily need the best plan to continue with the next
iteration. Using the exact best response guarantees the overall
convergence to a NE. However, adding an arbitrary plan
(pure strategy) with a better expected outcome for agent i is
sufficient for the algorithm to proceed to the next iteration,
since the new plan is added into the restricted game and
the new plan is going to be used by agent i. Therefore, we
also use setting where the planning algorithm has a strict
deadline on computation time, but the planning algorithm is
terminated whenever a plan that is strictly better than the
outcome in the restricted game for a particular player is
found. This setting is more common in larger game-theoretic



scenarios [11] or when reinforcement learning algorithms are
used as best responses [10], [17].

C. Termination of Double Oracle with Non-optimal Planners

In the setting where the planners are used to find the first
better plan compared to the currently optimal strategy from
the restricted game, there are two approaches for determining
when the algorithm should be terminated. In the first and
typically used variant, the double oracle algorithm terminates
in case neither of the players can improve the optimal strategy
from the restricted game (hereinafter denoted as both DO).
However, the main problem with this variant is that it can
happen that in the actual execution of the DO algorithm, new
strategies of only one player are added over several iterations
– for example, in iteration t, player 1 finds a marginally
better plan that is added into the restricted game and player
2 does not have a better response. In iteration t + 1, player
1 again finds a new marginally better plan, but player 2 does
not add anything, unless player 1 newly added strategy is an
actual optimal best response. However, in each iteration, best
response for player 2 is still computed and thus it takes com-
putation time. Therefore, we propose a novel second variant of
termination of double oracle algorithm – the algorithm stops
in case at least of the players cannot improve the optimal
strategy from the restricted game (hereinafter denoted as single
DO). This variant can, of course, reduce the quality of final
strategies, but our experimental results show that the loss is
rather marginal and the savings in the computation time are
substantial.

VI. EXPERIMENTS

We now turn to the experimental validation of proposed
double oracle algorithm with planners used as best response
algorithms.

A. Experimental Settings

We evaluated our algorithm on a two-player game where
each player controls multiple unmanned aerial vehicles
(UAVs). The goal of each player is to collect resources before
the opponent. After a resource is collected, it cannot be
collected again by the opponent. A resource can be collected
only by a UAV with a suitable sensor. Some resources may
require two sensors. In that case, a UAV equipped with the two
sensors or two UAVs, each of them with the required sensor
that can collect the resource.

The map of the domain is modeled as a graph G = (V,E),
where V is the set of locations and E is the set of edges
between the locations. Each UAV is located in some location
and can move from to another location only if there is an
edge between them. Each UAV has two available actions. It
can move to another location or it can collect a resource, given
that UAV is at the same location as some resource and it has
a suitable sensor.

We evaluated the double oracle algorithm on multiple sce-
narios. For the presentation, we select three case studies (see
Figure 2, blue triangles denote an initial position of the agent’s

UAVs, red circles are the positions of opponent’s UAVs, green
squares represent the resources). The first scenario represents
an easier case where each resource requires only one sensor to
collect (numbers in the brackets next to the resources denote
required types of sensors, the numbers next to the UAVs
represent types of sensors they are carrying). In the second
scenario, the situation is more complicated since 4 out of 6
resources require two types of sensors.

As a domain independent planner, we used LAMA [19].
Since LAMA does not guarantee optimality of found plans,
we used a domain-specific A∗ algorithm with admissible
heuristics for computing provably optimal plans. We ran the
experiments on a Linux machine with processor Intel Xeon
E5-2620 v4 at 2.10 GHz with 32GB RAM.

As the final measure of quality of produced plans, we
compute approximation error as the difference between the
values of best responses computed to the strategies computed
by the double oracle algorithm in the restricted game:

error(σ) = |ui(σi, br(σi))− ui(br(σ−i), σ−i)| .

For zero-sum games, the error should converge to zero when
using best response algorithms with optimality guarantees.
Note that we always used LAMA planning algorithm in the
run of the algorithm and A∗ was used solely for calculating
the error with respect to the ground truth.

B. Results

We first examine the quality of final strategies of the double
oracle algorithm – the results are depicted in Figure 3. In each
setting, we replaced the best response oracle in the double
oracle algorithm with a LAMA planner parametrized with a
deadline and let the double algorithm converge. Then, we have
calculated the error of the strategies computed as optimal in
the restricted game from the last iteration of the double oracle
algorithm. The error is calculated either using the LAMA
planner with 10-hours deadline, or with our domain-specific
A∗ planner.

For the first scenario (left graph in Figure 3), the results
show that LAMA planner with larger deadline is able to find
optimal plans (note that the difference between the error using
LAMA planner and A∗ is rather small and the error approaches
0). Generally, the error of final strategies decreases with
increasing available computation time given to the planner.
This is expected, however, this improvement in the quality
of strategies is not monotonous. Note that while the error of
strategies for the deadline 10 seconds is 0.175, the error for
the deadline 150 seconds the error is 0.182 (see the left graph
in Figure 3). This is an interesting phenomenon and it was
also confirmed in other scenarios (e.g., see Scenario 2, middle
graph in Figure 3, where the error for settings 1800s is 1.07
while the error for 2700s is 1.16).

The explanation of this counterintuitive phenomenon is
as follows. In the double oracle algorithm, the players are
iteratively computing better and better plans (i.e., the plans
with more tight deadlines). It can happen that a planner
computes a plan setting the near-optimal deadlines for the
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Fig. 2: Visualization of scenarios (numbered from the left, scenario 1, 2, and 3). Blue triangles denote UAVs of the agent, red circles denote
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numbers next to the UAVs represent sensors they are carrying.
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Fig. 3: Quality of final strategies of our algorithm when using planning algorithms with a fixed deadline (best plan found in the given time;
depicted as lines) and maximal computation time (first better plan is used; depicted as points Any X) on different scenarios (1, 2, and 3;
numbered from the left).

planning problem such that the planning algorithm is not able
to find a better response within the time limit for the opponent.
Moreover, the set of plans added for the setting with more
computation time for planners is not a superset of plans added
for the case with less computation time hence the final quality
of strategies does not need to decrease monotonously.

The second aspect that we analyzed is whether it is better
to use the domain-independent planner with a fixed deadline
or to use the first better plan found. For the first scenario,
the latter method was significantly better reaching optimal
strategy (for variant Any1800) in only 3850 seconds. For more
complex scenarios, the results of the first-better variant are
not consistently better (i.e., under the curve depicted by the
variants with fixed deadlines), but they are never worse. For
one setting, namely Any3600 on Scenario 3, we depicted the
histogram of computation times required by the best response
algorithm it took to find an improving plan (see Figure 4).
Most of the time, the improving plan has been found within
a couple of seconds. As expected, the expected time it takes
the planner to find an improving plan is increasing as the
quality of the strategies of agents is increasing and most of
the long best response computations were in the second half of
the iterations. Therefore, the experimental results suggest that
planning algorithms should be used similarly to reinforcement
learning algorithms and the first computed plan that improves
the quality over the current plans in the restricted game is

Fig. 4: Histogram of best response durations for Any3600 on
Scenario 3.

used.
Finally, our experimental results show that the lack of

optimality guarantees can have a significant impact on the
quality of final strategies. In more complex scenarios (Scenario
2 and 3; middle and right graphs in Figures 2 and 3), the
difference between the error calculated by LAMA planner
with 10 hours of computation time differs significantly from
the error computed using optimal A∗ algorithm. Consider, for
example, variant Any3600 in Scenario 3. The double oracle
algorithm terminates after 30300 seconds since neither player



Scenario 1 DO both DO single
Granularity time [s] iterations Error BR std BR mean time[s] iterations Error BR std BR mean

1.0 70569 38 1.18 2480.0 1857.0 8925 17 1.40 928.0 525.0
2.0 52608 49 2.12 2121.0 1073.0 8561 25 2.56 705.0 342.0
3.0 17550 28 3.77 1083.0 605.0 4662 21 3.83 476.0 193.0
4.0 10353 35 4.24 453.0 279.0 2601 15 4.13 386.0 133.0
5.0 15954 32 4.88 688.0 480.0 6785 25 4.55 386.0 247.0

Scenario 2 DO both DO single
Granularity time [s] iterations Error BR std BR mean time[s] iterations Error BR std BR mean

1.0 21542 53 1.43 963.0 406.0 11285 52 1.31 431.0 217.0
2.0 7381 20 2.88 591.0 366.0 1717 11 2.50 447.0 151.0
3.0 3245 10 3.00 495.0 264.0 2038 9 3.00 391.0 160.0
4.0 5457 25 5.00 333.0 194.0 4271 24 5.00 263.0 153.0
5.0 4320 28 5.63 276.0 133.0 3325 27 5.63 223.0 101.0

Scenario 3 DO both DO single
Granularity time [s] iterations Error BR std BR mean time[s] iterations Error BR std BR mean

1.0 2557 14 0.00 367.0 182.0 1621 13 0.00 309.0 125.0
2.0 2143 13 2.75 294.0 165.0 756 10 2.50 207.0 75.0
3.0 1509 6 4.00 377.0 251.0 806 5 4.00 337.0 161.0
4.0 3851 6 4.50 979.0 642.0 1831 5 4.50 796.0 366.0
5.0 2364 2 5.00 78.0 1181.0 1168 1 5.00 NaN 1166.0

TABLE I: Statistics of double oracle computation for all three scenarios. Error is measured by A∗ planner. Columns BR mean and BR std
contain mean duration of best responses computations and standard deviation of these durations, respectively.

can improve the strategy in the restricted game. Similarly, the
LAMA planner with 10-times more computation time also
cannot find an improving plan (note that the error is 0 with
LAMA used in the error computation). However, the actual
error (computed using A∗) is 1.296. Also note, that error of the
Any3600 variant is higher than in the case when the planning
algorithm has always 3600 seconds of computation time (the
error is 1.15 in this case), however, it takes more than 126000
seconds for the double oracle to converge in this settings.

C. Reducing problem complexity by increasing granularity

Now, we restrict the time setting for the best response
oracles to first better response found within the time limit
1800s (i.e., variant Any1800) and focus on other aspects that
can improve the computation time at the cost of quality of final
strategies. First, we have reduced the size of planning problems
by decreasing their granularity, specifically by reducing the
number of the timestamp objects used in problem formulation.

In the original planning problem, the number of timestamp
objects is equal to the length of longest path in the problem
that does not visit one vertex twice divided by the length
of the shortest edge in the graph. In the reduced problem,
the number of timestamps for each edge is divided by a
coefficient β. The problem size reduction is done only during
the computation of a best response. After the planner finds a
plan, then the plan is interpolated into the original problem.
Table II illustrates how granularity affects the number of
timestamps in the problem. The middle column shows how
many edge lengths are distinguishable with the corresponding
number of timestamps. This shows how the problem flattens
when we are decreasing the granularity. If this number would
be one, there would not be a difference for the planner to use
a short or a long edge.

As the second aspect, we analyzed two variants of ter-
mination when using first better response variant of double
oracle. Results in Table I show the computation times of the
two variants of DO (both and single) for all three scenarios.
The results show that, unsurprisingly, the computation time is
considerably smaller for the single DO cases than for both DO
one. On the other hand, the error is only marginally higher for
the single DO cases. Consider, for example, Scenario 1 (top
in Table I), where without reducing the problem size (i.e.,
granularity is set to 1.0), the original DO both method solved
the instance in over 70000 seconds, while our novel variant
DO single took less than 9000 seconds to solve. At the same
time, the error increased from 1.18 to only 1.4. That said,
it is usually the case that a player whose opponent failed
to generate best response does not improve its strategy that
much (given the time the player spends for generating its best
responses).

Granularity-wise, the results show that with increasing of
the coefficient β, i.e., with decreasing granularity, the error is
higher. Such an observation is indeed expectable. Time-wise,
the results show that the largest CPU time is spent in Scenarios
1 and 2 for cases where β = 1. However, counter-intuitively,
the smallest CPU time spent varies from β = 2 to β = 4 per
scenario and variant of DO. Also, the mean times reflecting
how hard is to solve a given response planning problem do
not decrease with increasing β.

To explain the above observation, we have to stress that
although the size of the problem itself should have to have
positive impact on planner’s performance, low granularity, on
the other hand, makes the problem representation very inac-
curate and thus hard to optimize (as the optimization metric
is also skewed by low granularity). Hence considering very
low granularity (large β) might not save time for generating



Granularity (β) Number of dist. lengths Number of timestamps

1.0 10 26
2.0 6 14
3.0 4 9
4.0 3 7
5.0 3 6

TABLE II: Granularity coefficient versus number of timestamps – all
scenarios

strategies that are, expectably, of low quality (have a large
error).

VII. CONCLUSIONS

Planning and acting in a real-world environment often
involves intelligent adversaries that actively hinder the pursuit
towards the goals. Specifically, in two agent scenarios, it
might be the case that one agent competes with the other
such that more goals (or reward) one achieves fewer goals
(or reward) the other achieves. Combining classical planning
with game-theoretic methods provides a platform in which
both agents can maximize their reward. In this paper, we
have embedded domain-independent classical planning into
the double oracle algorithm such that for generating a best
response we formulate a planning problem that optimizes plans
against the opponent’s strategy.

For our empirical analysis, we have used the well known
LAMA planner that generates satisficing plans (correct but not
necessarily optimal) such that it keeps improving the quality of
the plans throughout the time. Whereas the intuition suggests
that giving more time to the planner to generate plans would
have resulted in (nearly) optimal strategies, we have observed
that it might not necessarily be the case. As we experimentally
demonstrated, in the double oracle algorithm, the complexity
of the planning problem is increasing over iterations and thus
it can be the case that at some point one of the agents is unable
to appropriately react to the opponent’s plans, even when
using a planner with more computation time. Finally, we have
also introduced a modification to the termination condition
of the double oracle algorithm that significantly reduces time
while only slightly decreasing quality of computed randomized
robust plans.

Our work shows that in order to achieve robust plans
with guarantees against an opponent, one cannot omit the
(approximate) optimality guarantees for the planning/best-
response algorithm. However, if formal guarantees are not
required, using the double oracle algorithm results in more
robust plans compared to the case when the actions of the
opponent are ignored. There are several directions for future
work. In the presented work, only costs are affected by the
plans of the opponent. Similarly, we assume that once an agent
chooses a plan, it is executed in full. Both of these assumptions
can be relaxed in order to extend the possibilities of application
domains.
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